The potential of genome editing to strengthen local food production.

FSN Webinar July 03, 2020 Assoc. Prof. Bojin Bojinov Agricultural University of Plovdiv, Bulgaria

Genetic diversity: source for trait improvement

> Natural variations

Genome is dynamic and fluid

www.lowes.co m

Modern strawberries never existed in nature

Fragaria chiloensis
Chile

Fragaria virginiana Eastern North America

Fragaria ananassa Europe, 1740's

Gene transfer, 1950's style

Ln-9 gene for leaf rust resistance from Aegilops to wheat

Problem: Grass will not cross with wheat So cross with wheat relative

Wheat chromosomes

Final product

Mutation breeding

- > 3200 known varieties developed from mutation breeding
 - FAO/IAEA database (http://www-infocris.iaea.org/MVD/)

DNA changes

- 4 bp to 8 kb deletions
- ► Inversions of up to 1.5 kb
- Insertions ~200 bp
- Frame-shift mutations

Institute of Radiation Breeding
Ibaraki-ken, JAPAN
www.irb.affrc.go.jp/

Gene transfer, 1950's style

Things to notice

- Move many thousands of genes
- No one knows what genes got moved / mutated
- No regulations

1980s: Direct DNA transfer

Introduce DNA directly into cells through chemicals, electroporation, particle

bombardment or a bacterium called Agrobacterium

Original biolistic gun – a modified 22 caliber (J. Sanford & T. Klein, 1988).

Things to notice

- Move a few, well characterized genes
- Regulations

Research delivers biotech solutions

Genome editing

A genetic manipulation approach in which DNA is inserted, removed or replaced at a precise location within the genome.

Genome editing tools

Based on protein – DNA binding specificity:

- Meganucleases are engineered restriction enzymes that recognize long stretches of DNA sequences.
- Zinc Finger Nucleases (ZFNs) engineered DNA binding proteins made up of a chain of two-finger modules, each recognizing a unique hexamer (6 bp) sequence of DNA.
- Transcription Activator-Like Effectors bound Nucleases (TALENs) each TALE recognizes an individual base.

Based on RNA – DNA binding specificity:

- CRISPR-Cas9
- CRISPR-Cpf1 (now CRISPR-Cas12)
- •

Targeted genome editing

CRISPR-Cas9

Base editing

Gene regulation

The potential of genome editing to strengthen local food production – Example I

Disease resistance in local malting barley

The problem – net blotch disease

no local resistant varieties

Potential solution

- Obtained resistant/tolerant genotypes from NORGENE and added to our core collection
- > GWAS for resistance loci
- Planned gene editing to introduce identified resistant loci in BG genotypes

The potential of genome editing to strengthen local food production – Example II

Improved antioxidant contents in local tomato varieties

The problem

- Lower storage capacity of local varieties thus producing homogenous lots is problematic – sold mostly at farmers markets; difficult brand development
- Increasing demand for local varieties, especially if they can claim added health benefits

Proposed solution

- Perform metabolomics study of markedly different local varieties (yellow, red, pink, blue)
 - Identify loci responsible for increased antioxidant content (carotenoids, polyphenolics, etc.)
 - Pyramid various antioxidants into improved genotype(s) by genome editing

FSN Meeting July 03, 2020 Assoc. Prof. Bojin Bojinov Agricultural University of Plovdiv, Bulgaria